Limites de temperatura e pressão em Tanques de armazenamento

1. Introdução

Os Tanques são equipamentos de caldeiraria muito empregados em instalações industriais, como refinarias de petróleo, petroquímicas e terminais, para o armazenamento de líquidos. Embora haja normas brasileiras, na prática esses Tanques são projetados e construídos a partir das normas americanas, como a seguir:

Tipo de equipamento	Norma ou código de projeto e construção
Tanques sem teto	AWWA D100
Tanques de Teto Fixo	API STD 650
	Básico: Tanques em pressão atmosférica
	Anexo F Design of Tanks for Small Internal
	Pressures: Tanques de pequena pressão interna
	API STD 620
	Tanques de baixa pressão
Tanques de Teto Flutuante externo ou interno	API STD 650
com teto cônico ou "em abóboda" ou domo	Anexo C External Floating Roofs
geodésico	Anexo G Structurally-Supported Aluminum Dome
	Roofs
	Anexo H Internal Floating Roofs
Vasos de pressão	ASME Sec VIII Div 1 ou Div 2

Estes limites aplicam-se a Tanques de armazenamento soldados, verticais, cilíndricos, instalados sobre o solo, com fundo uniformemente suportado, com teto ou sem teto, de várias capacidades ou volumes de armazenamento e em serviços não refrigerados.

2. Referências

- API STANDARD 650 Welded Tanks for Oil Storage
- API Standard 620-Design and Construction of Large, Welded, Low-pressure Storage Tanks
- API STANDARD 2000 Venting Atmospheric and Low-pressure Storage Tanks
- ASME Boiler & Pressure Vessel Code VIII Division 1-Rules for Construction of Pressure Vessels
- ASME Boiler & Pressure Vessel Code VIII Division 2-Rules for Construction of Pressure Vessels Alternative Rules
- AWWA D100-American Water Works Association-Welded carbon steel tanks for water storage at atmospheric pressure
- ABNT NBR 7821-Tanques soldados para armazenamento de petróleo e derivados
- ABNT NBR 15461-Armazenamento de líquidos inflamáveis e combustíveis Construção e instalação de Tanque aéreo de aço-carbono

3. Limites das normas

Essas normas de projeto e construção dos Tanques de armazenamento são empregadas dentro de certos limites denominados estruturais, máximo e mínimo, de temperatura e pressão do líquido armazenado, impostos pelas próprias normas.

4. Temperaturas mínima e máxima de armazenamento

A temperatura de armazenamento do liquido deve levar em conta os aspectos estrutural e operacional.

4.1 Limite estrutural

O limite estrutural é função dos materiais de fabricação do Tanque.

petroblog-Santini Página 1 de 8

Há dois valores importantes:

- Temperatura mínima admissível de metal;
- Temperatura máxima admissível de metal.

4.1.1. Limite de temperatura mínima estrutural em Tanques de armazenamento

O conhecimento da temperatura mínima admissível do metal de fabricação do Tanque, durante a sua vida operacional, é importante para impedir a fragilização do material, que pode levar à fratura frágil do material.

É a propriedade mecânica conhecida como tenacidade ou resistência a esforços em baixas temperaturas, que dá a medida da energia de choque ou impacto, que o metal absorve antes da ruptura, em temperaturas baixas ou abaixo da temperatura de transição do material.

Para cada material há uma temperatura, conhecida como "temperatura de transição", na qual o material altera o seu comportamento de dúctil para frágil.

O choque ou impacto, no caso de Tanques, pode ser, por ex., choque térmico, ou aumento súbito da pressão interna ou concentração de altas tensões localizadas ou algum acidente durante os trabalhos de manutenção do Tanque.

Se o material estiver em temperatura abaixo da temperatura de transição, ele se torna frágil e não consegue absorver os esforços decorrentes do choque, podendo ocorrer a ruptura frágil.

Essa temperatura de transição é determinada no ensaio de impacto ou teste de "Charpy".

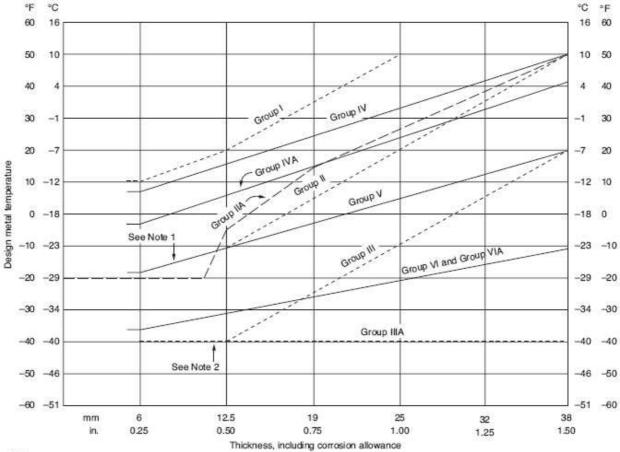
O limite de temperatura mínima de operação em Tanques de armazenamento é estabelecido conforme a norma API STD 650 Tabela 4-3 e Figura 4-1.

Para os tanques não refrigerados, a temperatura mínima de metal design metal temperature a comparar é a temperatura ambiente mais baixa da região, onde o Tanque está localizado, acrescida de mais 5°C (que leva em conta o filme isolante que se forma sobre a chapa do Tanque).

Roteiro:

- ✓ Na Tabela 4-3 identifica-se em que Grupo Group o material de fabricação do Tanque se enquadra.
- ✓ Na Figura 4-1, com a espessura calculada para o material e o seu Grupo *Group* se determina a temperatura mínima de metal, em que o ensaio de impacto não é requerido.
- ✓ Se a temperatura mínima de operação for igual ou superior, não há risco de fratura frágil.
- ✓ Se a temperatura mínima de operação for inferior, se deve providenciar o teste Charpy do material, para se estabelecer a temperatura mínima de metal.
- ✓ Se a temperatura mínima de operação ainda for inferior ao valor do teste, se deve mudar para um material mais resistente, isto é, que apresenta uma temperatura de transição menor.

petroblog-Santini Página 2 de 8


Table 4-3a—Material Groups, SI Units (See Figure 4-1 and Note 1 Below)

Group As Rol Semi-ki	led,	Group II As Rolled, Killed or Semi-killed		ed, As Rolled, As Rolled, Killed		Group IIIA Normalized, Killed Fine-Grain Practice	
Material	Notes	Material	Notes	Material	Notes	Material	Notes
A 283M C	2	A 131M B	7	A 573M-400		A 131M CS	
A 285M C	2	A 36M	2, 6	A 516M-380		A 573M-400	10
A 131M A	2	G40.21-260W		A 516M-415		A 516M-380	10
A.36M	2, 3	Grade 250	5, 8	G40.21-260W	9	A 516M-415	10
Grade 235	3, 5			Grade 250	5, 9	G40.21-260W	9, 10
Grade 250	6					Grade 250	5, 9, 10
						Group Normaliz	

Group IV As Rolled, Killed Fine-Grain Practice		Group IVA As Rolled, Killed Fine-Grain Practice		Group V Normalized, Killed Fine-Grain Practice		Quenched and Te Killed Fine-Grain Reduced Car	mpered, Practice
Material	Notes	Material	Notes	Material	Notes	Material	Notes
A 573M-450		A 662M C		A 573M-485	10	A 131M EH 36	
A 573M-485		A 573M-485	11	A 516M-450	10	A 633M C	
A 516M-450		G40.21-300W	9, 11	A 516M-485	10	A 633M D	
A 516M-485		G40.21-350W	9, 11	G40.21-300W	9, 10	A 537M Class 1	
A 662M B				G40.21-350W	9, 10	A 537M Class 2	13
G40.21-300W	9					A 678M A	
G40.21-350W	9					A 678M B	13
E 275	4, 9					A 737M B	
E 355	9					A 841, Grade A, Class 1 A 841, Grade B, Class 2	
Grade 275	5, 9						

Notes:

- Most of the listed material specification numbers see ASTM specifications (including Grade or Class); there are, however, some exceptions: G40.21 (including Grade) is a CSA specification; Grades E 275 and E 355 (including Quality) are contained in ISO 630; and Grade 235, Grade 250, and Grade 275 are related to national standards (see 4.2.5).
- 2. Must be semi-killed or killed.
- Thickness ≤ 20 mm.
- 4. Maximum manganese content of 1.5%.
- 5. Thickness 20 mm maximum when controlled-rolled steel is used in place of normalized steel.
- Manganese content shall be 0.80% 1.2% by heat analysis for thicknesses greater than 20 mm, except that for each reduction of 0.01% below
 the specified carbon maximum, an increase of 0.06% manganese above the specified maximum will be permitted up to the maximum of 1.35%.
 Thicknesses ≤ 20 mm shall have a manganese content of 0.80% 1.2% by heat analysis.
- Thickness ≤ 25 mm.
- Must be killed.
- 9. Must be killed and made to fine-grain practice.
- 10. Must be normalized.
- 11. Must have chemistry (heat) modified to a maximum carbon content of 0.20% and a maximum manganese content of 1.60% (see 4.2.6.4).
- 12. Produced by the thermo-mechanical control process (TMCP).
- 13. See 5.7.4.6 for tests on simulated test coupons for material used in stress-relieved assemblies.
- 14. See 4.2.9 for impact test requirements (each plate-as-rolled tested).

Notes:

- The Group II and Group V lines coincide at thicknesses less than 12.5 mm (¹/₂ in.).
- The Group III and Group IIIA lines coincide at thicknesses less than 12.5 mm (1/2 in.).
- The materials in each group are listed in Table 4-3.
- 4. This figure is not applicable to controlled-rolled plates (see 4.2.7.4).
- 5. Use the Group IIA and Group VIA curves for pipe and flanges (see 4,5.5.2 and 4.5.5.3).

Figure 4-1—Minimum Permissible Design Metal Temperature for Materials Used in Tank Shells without Impact Testing

4.1.2. Limite de temperatura máxima estrutural em Tanques de armazenamento

O limite de temperatura máxima estrutural é função do tipo de teto do Tanque e da norma ou código de projeto e construção.

Acima de 93°C é necessário recalcular o Tanque, pois a partir de 93°C a tensão admissível do material de construção, aço Carbono, começa a decair, conforme a Tabela M-1 da norma API STD 650 Anexo M- Requirements for Tanks Operating at Elevated Temperatures.

Minimum Specified Yield Strength (MPa [lbf/in.2]) Temperature From ≥ 310 to < 380 MPa < 310 MPa ≥ 380 MPa (< 45,000 lbf/in.2) (≥ 45,000 to < 55,000 lbf/in.2) (≥ 55,000 lbf/in.2) (°C) (°F) 94 0.91 0.88 0.92 150 300 0.88 0.81 0.87 200 400 0.85 0.75 0.83 0.70 0.79 260 500 0.80

Table M-1-Yield Strength Reduction Factors

Note: Linear interpolation shall be applied for intermediate values.

Há, pois, o limite máximo de 93°C (200°F) para os seguintes tipos de Tanques:

- a- Tanques sem teto;
- b- Tanques com teto flutuante externo;
- c- Tanques de teto flutuante interno de plástico ou material composto.

Para o uso de tetos geodésicos em domos de Alumínio, ou flutuante interno em Alumínio, em temperaturas acima de **65°C**, devem ser adotados os critérios de redução da resistência mecânica, conforme a norma ASME B96.1.

ASME B96.1-Welded Aluminum-Alloy Storage Tanks No Replacement General

This Standard covers the design, materials, fabrication, erection, inspection, and testing requirements for welded aluminum-alloy, field-erected or shop-fabricated, aboveground, vertical, cylindrical, flat bottom, open- or closed-top tanks storing liquids under pressures approximating atmospheric pressure at ambient temperatures.

The limitation of temperature to "ambient" is not intended to preclude the use of these tanks at temperatures above ambient temperature. Allowable stresses for commonly used aluminum alloys are tabulated in this Standard for temperatures to 204°C (400°F) maximum. However, when the design temperature exceeds 65°C (150°F), additional design considerations, which are not included in this Standard, are the responsibility of the tank designer.

Em Tanque existente, quando necessário operar com temperatura acima de **93°C**, há o recurso de limitar-se a altura de enchimento do Tanque, para que a tensão atuante seja no máximo igual à tensão admissível do material do costado na temperatura pretendida.

✓ Limites de Tanques de teto fixo

Para os Tanques de teto fixo de aço carbono o limite é até **260°C** (500°F), desde que atendidos aos requisitos adicionais conforme o API 650 Appendix M-Requirements for tanks operating at elevated temperatures.

Para os Tanques de teto fixo com flutuante interno de Alumínio o limite é 65°C.

Para os Tanques de teto fixo de cobertura geodésica de Alumínio o limite é 65°C.

✓ Limites para teto flutuante externo de aço Carbono

A temperatura máxima de armazenamento do produto deve ser inferior à sua temperatura inicial de ebulição na pressão atmosférica do local de armazenamento e não superior a **93°C**. Nos Tanques de teto flutuante, a maior evaporação do produto junto do teto, com aumento da temperatura, influencia diretamente a estabilidade do teto.

A temperatura de superfície líquida sob a chaparia central do teto tipo pontão deve ser estabelecida para a condição de máxima radiação solar na região. Essa temperatura deve ser inferior à temperatura inicial de ebulição do produto na pressão dada pelo peso do teto. Outra limitação é dada pela temperatura máxima de **100°C**, para o material do dreno flexível do teto flutuante.

✓ Limites para teto flutuante interno de Alumínio

A temperatura máxima de armazenamento do produto deve ser inferior à sua temperatura inicial de ebulição, na pressão atmosférica do local de armazenamento, e inferior a **65°C**, a que for menor.

4.1.3. Resumo de temperatura máxima de armazenamento por questão estrutural

Em linhas gerais, a temperatura máxima de armazenamento do produto por questão estrutural é conforme a tabela a seguir:

petroblog-Santini Página 5 de 8

Tipo de teto do Tanque de armazenamento	Projeto e construção API STD 650	Faixa de temperatura de operação	Redução da tensão admissível de projeto
Sem teto	Básico Item 3.9	Até 93°C	Não necessário.
Teto fixo de aço carbono	Básico	Até 93°C	Não necessário
	Básico	Acima de 93°C até 260°C	Necessário conforme API STD 650 Anexo. M
Teto flutuante externo	Anexo C	Até 93°C	Não necessário.
Teto cobertura Alumínio	Anexo G	Até 65°C	Não necessário
		Acima de 65°C até 204°C	Necessário conforme ASME B96.1
Teto flutuante interno de	Anexo H	Até 65°C	Não necessário
Alumínio		Acima de 65°C até 204°C	Necessário conforme ASME B96.1
Teto flutuante interno de plástico ou material composto	Anexo H	Até 93°C	Não necessário.
Teto flutuante interno de aço	Anexo H	Até 93°C	Não necessário
Carbono		Acima de 93°C até 260°C	Necessário conforme API 650 Anexo M
Teto fixo de pequena	Anexo F	Até 93°C	Não necessário
pressão interna		Acima de 93°C até 260°C	Necessário conforme API 650 Anexo M
Tanques fabricados e	Anexo J	Até 93°C	Não necessário
montados em fábrica		Acima de 93°C até 260°C	Necessário conforme API 650 Anexo M

4.2. Limite operacionalO limite de temperatura operacional é função da temperatura, que ocorre em alguma emergência, e poderia trazer algum risco de acidente ao Tanque.

Descontrole operacional	Risco de acidente
Em Tanque com aquecimento, a água	Causa de sobrepressão interna, além da
arrastada com o produto, ao entrar no Tanque	pressão de projeto.
aquecido, pode causar a evaporação súbita	
de água.	
Possibilidade da evaporação súbita de	Causa de sobrepressão interna, além da
condensado de vapor d'água, que vazar do	pressão de projeto.
sistema de aquecimento,	
Presença de água residual no fundo de	O produto ao entrar no Tanque, provoca
Tanque com aquecimento.	uma turbulência no fundo que leva ao
Nota: Embora seja estranho a presença de	contato da água residual com o sistema de
água líquida quente e não somente vapor	aquecimento. Pode então ocorrer a
d'água, em Tanque com aquecimento, isto	ebulição da água, que ao evaporar
ocorre porque cerca de 30% do calor perdido	bruscamente, em curto espaço de tempo,
em um Tanque isolado se dão pelo fundo do	gera uma grande quantidade de vapor, que
mesmo. Além disso, o calor gerado pelas	por sua vez causa danos no teto do
serpentinas se propaga mais rapidamente	Tanque.
para cima do que para baixo, seguindo as	
correntes de convecção.	
Por isso é comum se ter água em estado	
líquido até cerca de 30 cm acima do fundo.	

petroblog-Santini Página 6 de 8

,
Causa de sobrepressão interna e pode provocar uma mistura inflamável no espaço vapor do Tanque.
Quando o Tanque está na fase de esvaziamento, devido à entrada de ar no mesmo, ao contato com este sulfeto pirofórico, pode ocorrer a combustão espontânea e até mesmo a explosão interna no Tanque. Adotar o limite de 180°C. Se necessário operar acima de 180°C, instalar no Tanque um sistema inertização com gás carbônico ou Nitrogênio. Devido ao arraste ocasional de leves, nos
casos de desbalanceamento na Torre Atmosférica, adotar o limite de 130°C.
Se a formação de espuma é muito rápida e violenta, pode resultar em material inflamável e risco de fogo. A capacidade do sistema de alívio do tanque deve prever a liberação desse excesso de vapor. Por outro lado, o produto pesado propicia a polimerização na sede da válvula de alívio, que pelo entupimento pode levar à sobrepressão e a ruína do tanque. Nestas situações a vazão pela válvula de alívio de pressão pode não ser suficiente, pela presença de fluxo bifásico e/ou porque pode estar obstruída pelo material polimerizado, e o tanque pode vir a ser pressurizado. Por estas razões, a temperatura de armazenamento de produtos viscosos deve ser ao menos 10°C abaixo do ponto de ebulição da água, para se evitar a ebulição turbilhonar.

5. Pressão máxima de armazenamento

A pressão máxima de armazenamento é a pressão de projeto do Tanque, que depende da norma ou código utilizado no projeto.

5.1. Limites para Tanque atmosférico de teto fixo

Conforme a norma API STD 650, os valores admissíveis para pressão e vácuo são respectivamente: 37 mm H2O e 25 mm H2O, conforme tabela a seguir:

Vácuo admissível	1in H2O	25mm H2O	0,25 kPa	2,5 mbar	0,04 psig
Pressão interna	1,4 in H2O	37 mm H2O	0,363 kPa	3,5 mbar	0,05 psig
admissível					

petroblog-Santini Página 7 de 8

5.2. Limites para Tanque de teto fixo de baixa pressão

5:2: Ellinices para Tanque de teto não de baixa pressão				
Código de projeto e	Pressão do espaço de			
construção	vapor			
API STD 650	≤ 0,05 psig			
Tanques atmosféricos	0,36 kPa			
API STD 650 Anexo F	≤ 1,5 psig			
Tanques de pequena pressão	10,34 kPa			
API STD 620	< 15 psig			
Tanques de baixa pressão	103,4 kPa			
ASME Sec VIII	≥ 15 psig			
Vasos de pressão	103,4 kPa			

5.3. Limite para Tanque de teto flutuante

O limitante no caso do teto flutuante é a pressão de vapor do fluido na temperatura de armazenamento.

O valor da pressão de vapor limite é 11,1 psig (76,53 kPa), adotado por EPA 40 CFR 60. Acima do valor 11,1 psig a flutuabilidade do teto flutuante fica comprometida, pois nesses casos, o vapor aprisionado abaixo do teto flutuante estufa o teto para cima.

Este é o principal risco de adernamento, uma vez que a bacia de drenagem pluvial está localizada próxima ao centro. Se este ponto se eleva a água fica acumulada sobre o teto flutuante na periferia. Com isso, há o risco de provocar o aumento do ângulo de inclinação do teto em numa só direção e interferir com a guia antirrotacional, o que provocaria o adernamento do teto.

5.4. Tabela resumo dos limites das pressões máximas

Tipo de teto	Pressão de vapor Reid do líquido	Código ou Norma de projeto e construção
Tanque de Teto Fixo	≤1,5 psig	API STD 650 Básico, para os Tanques atmosféricos (limite 0,05 psig) API STD 650 Anexo F Design of Tanks for Small Internal Pressures para Tanques de pequena pressão interna (limite 1,5 psig)
Tanque de Teto Flutuante externo ou interno com teto cônico ou "em abóboda" ou domo geodésico	1,5 @ 11,1 psig	API STD 650 Anexo C External Floating Roofs Anexo G Structurally-Supported Aluminum Dome Roofs Anexo H Internal Floating Roofs
Tanque de Teto Fixo cônico	> 11,1 psig até 15 psig	API STD 620 Tanques de baixa pressão
Vaso de pressão	≥15 psig	ASME Sec VIII Div 1 ou ASME Sec VIII Div 2

Nota: A pressão de vapor do líquido é na temperatura de armazenamento.

petroblog-Santini Página 8 de 8